Basic principles of LEOS

using up to 7 sensors

Diffusion around the Pipe - Phase 1

LEOS (Leak- and Location System)

Diffusion around the Pipe - Phase 2

LEOS (Leak- and Location System)

Diffusion around the Pipe - Phase 3

LEOS (Leak- and Location System)

Diffusion around the Pipe - Phase 4

LEOS (Leak- and Location System)

Diffusion around the Pipe - Phase 5

LEOS (Leak- and Location System)

Structure of Sensor Tube

LEOS (<u>Leak- and Location System</u>)

Mode of Operation

LEOS capabilities

LEOS Reference Location Plot High Background of Methane at Selected Positions

LEOS Reference Measurement Low Background at VTG (BP) Pipeline Bundle

LEOS Location Plot Influence of Sensor Type and Filter Algorithm

Pipeline monitoring with central computer

LEOS (leak detection and location system)

Groundwater Protection Area 1978 BASF AG, Ludwigshafen

Medium transported: Ethylene $C_2 H_4$ Piping length: 4km

Configuration: above groundwater level, sensor tube lies beside pipe

Rhine River Crossing /Foreshore 1978 BASF AG, Ludwigshafen

Medium transported: Ethylene $C_2 H_4$ Piping length: $2 \times 1,5 \text{ km}$

Configuration: sensor tube at 12 o' clock in Rhine River bed,

in a depth of 24 m from the maximum water level

Piping Bundle in Rhine Foreshore 1983 Wintershall AG, Mannheim

Medium transported: Pentane and nonane cut, **Piping length:** 2 x 1,5 km

benzene, aviation fuel,

Configuration: sensor tube at 12 o' clock in Rhine River bed,

in a depth of 24 m from the maximum water level

Chemical Storage Facility

1987 Cable Factory, Coburg

Medium stored: Ketone, mixed solvents, oil etc monitored area: 225 m³

Configuration: sensor tube laid in ducts below building

LEOS (<u>Le</u>ak- and <u>Lo</u>cation <u>System</u>)

Track Report on Monitoring Function / Field Experience

- LEOS monitoring systems since 1978 in operation
- Small leaks (valves) localized on pipelines during operation
- No leak undetected including field tests
- Qualified system for water protection in Germany
- Natural Methane emissions by organic processes
- Other background emissions from *industrial pollutions*

LEOS (<u>Leak- and Location System</u>)

Experience on System Function

- 100 % reliability of installed sensor tube buried in soil or water
- High reliable electronic components
- Automatic monitoring with specified capabilities
- Low effort of *maintenance*
- Module technique allows simple adaption to monitoring task
 (loop or split systems, up to 8 monitoring lines for each system)

BPXA Northstar Project

Stipulation of Army Corps of Engineers:

"oil spill leak detection system"

Design Basis: 15 years, plus

6 miles subsea oil pipeline

water depth 0 to 39 ft, burial depth 5 to 11 ft

60 °F operating temperature

ambient air temperature during construction : - 50°F

high salinity

Sensitivity: < 1 bbl/day (32.5 bbl/day requested)

Performance requirements:

no false alarms

robust to survive installation and long-term operation

LEOS (<u>Leak- and Location System</u>)

Main LEOS Components of Northstar Project

Construction Considerations - Protection during Installation

Accidental mechanical impact, abrasion due to handling etc.

- •Sensor hose will be laid in a protective perforated tube made by PE-X designed for high dynamic and static loads
- Sensor hose and PE-X assembly will be delivered on 300 m coils and unreeled on ice to straight length
- splice and repair technique in the field

Low ambient temperature

modified inner sensor tube made from PVDF

Quality Management during Installation

- •Pressure tests of the sensor hose after each relevant step
- •Final pressure test of the complete monitoring line

Crude Oil Pipeline in Water Protected Areas

LEOS (<u>Leak- and Location System</u>)

NW-D / 1999

Measuring System Cabinet

LEOS (Leak- and Location System)

NW-D / 1999

Measuring System Cabinet

LEOS (Leak- and Location System)

NW-D / 1999

Crude Oil Pipeline in Water Protected Areas

LEOS (<u>Leak- and Location System</u>)

NW-D / 1999

Field Tests of Leak Detection Sensitivity

LEOS (<u>Leak- and Location System</u>)

NW-D / 1999

LEOS Sensor Tubes

LEOS (Leak- and Location System)